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Problem 3.12

Find ®(p,t) for the free particle in terms of the function ¢(k) introduced in Equation 2.101. Show
that for the free particle |®(p,t)|? is independent of time. Comment: the time independence of
|®(p,t)|? for the free particle is a manifestation of momentum conservation in this system.

Solution

The general formulas for the Fourier transform of a function f(z) and its corresponding inverse
Fourier transform are as follows.
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The Fourier transform can be used to solve linear partial differential equations over the whole
line. Any choice for a and b is acceptable, and how one chooses to define the Fourier transform
really comes down to personal preference. In Chapter 2, for example, the Schrédinger equation
was solved using ¢ = 0 and b = —1.
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One choice for a and b is special in quantum mechanics, though: a =0 and b = —1/h.
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FHe(p,t)} = U(z,t) = ’W/h@ (p,t) dp
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U(z,t) is the position-space wave function because |¥(x,t)|? represents the probability
distribution for the particle’s position. On the other hand, ®(p,t) is the momentum-space wave
function because |®(p,t)|? represents the probability distribution for the particle’s momentum.
These formulas are a result of solving the eigenvalue problem for the momentum operator.
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This is a non-normalizable function, so the spectrum is continuous, meaning the continuous
Dirac-analogs of Equations 3.10 and 3.11 on page 93 apply. Since p is a hermitian operator, the
eigenfunctions associated with the real, distinct eigenvalues are orthogonal.
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Determine A by requiring the magnitude of the delta function to be 1.
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Consequently,

f(.%') _ \/;Tr*heipx/ﬁ.

P is a hermitian operator, so any function in position-space, including the one we’re most
interested in, ¥(x,t), can be expressed as a linear combination of its eigenfunctions.

U(a,t) = /_ Z B(p, 1) <\/217heim/h) dp

By comparing this to the general formulas, we see that this is a very special inverse Fourier
transform, one where a = 0 and b = —1/k. The initial value problem for a free particle is
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Take the Fourier transform of both sides of each equation to solve it.

fu) o3
F{U(z,0)} = F{Wo(x)}

Use the fact that the transform is a linear operator.
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U (k,0) = To(k) = o(k)
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Transform the derivatives and solve the resulting differential equation for W (k,t).
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(k,t) = C(k)exp (-2121@%)

Use the transformed initial condition to determine C(k).
U(k,0) = C(k) = ¢(k)
As a result,
U(k,t) = ¢p(k) exp <—;Zk2t> .
Take the inverse Fourier transform to get ¥(x,t).
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Now that the position-space wave function is known, the momentum-space wave function can be
found by taking the Fourier transform with ¢ =0 and b = —1/A.

®(p,t) = F{¥(z,1)}
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The probability distribution function for the free particle’s momentum is then

1B (p, )2 = & (p, )D(p, 1)
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which is independent of time.
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