## Problem 3.12

Find $\Phi(p, t)$ for the free particle in terms of the function $\phi(k)$ introduced in Equation 2.101. Show that for the free particle $|\Phi(p, t)|^{2}$ is independent of time. Comment: the time independence of $|\Phi(p, t)|^{2}$ for the free particle is a manifestation of momentum conservation in this system.

## Solution

The general formulas for the Fourier transform of a function $f(x)$ and its corresponding inverse Fourier transform are as follows.

$$
\left\{\begin{array}{l}
F(k)=\sqrt{\frac{|b|}{(2 \pi)^{1-a}}} \int_{-\infty}^{\infty} e^{i b k x} f(x) d x \\
f(x)=\sqrt{\frac{|b|}{(2 \pi)^{1+a}}} \int_{-\infty}^{\infty} e^{-i b k x} F(k) d k
\end{array}\right.
$$

The Fourier transform can be used to solve linear partial differential equations over the whole line. Any choice for $a$ and $b$ is acceptable, and how one chooses to define the Fourier transform really comes down to personal preference. In Chapter 2, for example, the Schrödinger equation was solved using $a=0$ and $b=-1$.

$$
\left\{\begin{array}{rl}
\mathcal{F}\{\Psi(x, t)\} & =\tilde{\Psi}(k, t)
\end{array}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i k x} \Psi(x, t) d x\right\}\left(\tilde{\mathcal{F}^{-1}\{\tilde{\Psi}(k, t)\}}=\Psi(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i k x} \tilde{\Psi}(k, t) d k\right.
$$

One choice for $a$ and $b$ is special in quantum mechanics, though: $a=0$ and $b=-1 / \hbar$.

$$
\left\{\begin{array}{c}
\mathscr{F}\{\Psi(x, t)\}=\Phi(p, t)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} e^{-i p x / \hbar} \Psi(x, t) d x \\
\mathscr{F}^{-1}\{\Phi(p, t)\}=\Psi(x, t)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} e^{i p x / \hbar} \Phi(p, t) d p
\end{array}\right.
$$

$\Psi(x, t)$ is the position-space wave function because $|\Psi(x, t)|^{2}$ represents the probability distribution for the particle's position. On the other hand, $\Phi(p, t)$ is the momentum-space wave function because $|\Phi(p, t)|^{2}$ represents the probability distribution for the particle's momentum. These formulas are a result of solving the eigenvalue problem for the momentum operator.

$$
\begin{gathered}
\hat{p} f(x)=p f(x) \\
-i \hbar \frac{d}{d x} f(x)=p f(x) \\
\frac{d f}{d x}=\frac{i p}{\hbar} f(x) \\
f(x)=A e^{i p x / \hbar}
\end{gathered}
$$

This is a non-normalizable function, so the spectrum is continuous, meaning the continuous Dirac-analogs of Equations 3.10 and 3.11 on page 93 apply. Since $\hat{p}$ is a hermitian operator, the eigenfunctions associated with the real, distinct eigenvalues are orthogonal.

$$
\begin{aligned}
\left\langle f^{\prime} \mid f\right\rangle=\int_{-\infty}^{\infty}\left(A e^{i p^{\prime} x / \hbar}\right)^{*}\left(A e^{i p x / \hbar}\right) d x & =\int_{-\infty}^{\infty}\left(A^{*} e^{-i p^{\prime} x / \hbar}\right)\left(A e^{i p x / \hbar}\right) d x \\
& =|A|^{2} \int_{-\infty}^{\infty} e^{i\left(p-p^{\prime}\right) x / \hbar} d x \\
& =A^{2}\left[2 \pi \delta\left(\frac{p-p^{\prime}}{\hbar}\right)\right] \\
& =A^{2}\left[2 \pi|-\hbar| \delta\left(p^{\prime}-p\right)\right] \\
& =2 \pi \hbar A^{2} \delta\left(p^{\prime}-p\right)
\end{aligned}
$$

Determine $A$ by requiring the magnitude of the delta function to be 1 .

$$
2 \pi \hbar A^{2}=1 \quad \rightarrow \quad A=\frac{1}{\sqrt{2 \pi \hbar}}
$$

Consequently,

$$
f(x)=\frac{1}{\sqrt{2 \pi \hbar}} e^{i p x / \hbar}
$$

$\hat{p}$ is a hermitian operator, so any function in position-space, including the one we're most interested in, $\Psi(x, t)$, can be expressed as a linear combination of its eigenfunctions.

$$
\Psi(x, t)=\int_{-\infty}^{\infty} B(p, t)\left(\frac{1}{\sqrt{2 \pi \hbar}} e^{i p x / \hbar}\right) d p
$$

By comparing this to the general formulas, we see that this is a very special inverse Fourier transform, one where $a=0$ and $b=-1 / \hbar$. The initial value problem for a free particle is

$$
\begin{aligned}
& i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}, \quad-\infty<x<\infty, t>0 \\
& \Psi(x, 0)=\Psi_{0}(x)
\end{aligned}
$$

Take the Fourier transform of both sides of each equation to solve it.

$$
\begin{aligned}
& \mathcal{F}\left\{i \hbar \frac{\partial \Psi}{\partial t}\right\}=\mathcal{F}\left\{-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}\right\} \\
& \mathcal{F}\{\Psi(x, 0)\}=\mathcal{F}\left\{\Psi_{0}(x)\right\}
\end{aligned}
$$

Use the fact that the transform is a linear operator.

$$
\begin{aligned}
& i \hbar \mathcal{F}\left\{\frac{\partial \Psi}{\partial t}\right\}=-\frac{\hbar^{2}}{2 m} \mathcal{F}\left\{\frac{\partial^{2} \Psi}{\partial x^{2}}\right\} \\
& \tilde{\Psi}(k, 0)=\tilde{\Psi}_{0}(k)=\phi(k)
\end{aligned}
$$

Transform the derivatives and solve the resulting differential equation for $\tilde{\Psi}(k, t)$.

$$
\begin{gathered}
i \hbar \frac{d \tilde{\Psi}}{d t}=-\frac{\hbar^{2}}{2 m}(i k)^{2} \tilde{\Psi}(k, t) \\
\frac{d \tilde{\Psi}}{d t}=-\frac{i \hbar}{2 m} k^{2} \tilde{\Psi}(k, t) \\
\tilde{\Psi}(k, t)=C(k) \exp \left(-\frac{i \hbar}{2 m} k^{2} t\right)
\end{gathered}
$$

Use the transformed initial condition to determine $C(k)$.

$$
\tilde{\Psi}(k, 0)=C(k)=\phi(k)
$$

As a result,

$$
\tilde{\Psi}(k, t)=\phi(k) \exp \left(-\frac{i \hbar}{2 m} k^{2} t\right) .
$$

Take the inverse Fourier transform to get $\Psi(x, t)$.

$$
\begin{aligned}
\Psi(x, t) & =\mathcal{F}^{-1}\{\tilde{\Psi}(k, t)\} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i k x} \phi(k) \exp \left(-\frac{i \hbar}{2 m} k^{2} t\right) d k
\end{aligned}
$$

Now that the position-space wave function is known, the momentum-space wave function can be found by taking the Fourier transform with $a=0$ and $b=-1 / \hbar$.

$$
\begin{aligned}
\Phi(p, t) & =\mathscr{F}\{\Psi(x, t)\} \\
& =\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} e^{-i p x / \hbar} \Psi(x, t) d x \\
& =\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} e^{-i p x / \hbar}\left[\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i k x} \phi(k) \exp \left(-\frac{i \hbar}{2 m} k^{2} t\right) d k\right] d x \\
& =\frac{1}{2 \pi \sqrt{\hbar}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-i p x / \hbar} e^{i k x} \phi(k) \exp \left(-\frac{i \hbar}{2 m} k^{2} t\right) d k d x \\
& =\frac{1}{2 \pi \sqrt{\hbar}} \int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} e^{i(k-p / \hbar) x} d x\right] \phi(k) \exp \left(-\frac{i \hbar}{2 m} k^{2} t\right) d k \\
& =\frac{1}{2 \pi \sqrt{\hbar}} \int_{-\infty}^{\infty}\left[2 \pi \delta\left(k-\frac{p}{\hbar}\right)\right] \phi(k) \exp \left(-\frac{i \hbar}{2 m} k^{2} t\right) d k \\
& =\frac{1}{\sqrt{\hbar}} \int_{-\infty}^{\infty} \delta\left(k-\frac{p}{\hbar}\right) \phi(k) \exp \left(-\frac{i \hbar}{2 m} k^{2} t\right) d k \\
& =\frac{1}{\sqrt{\hbar}} \phi\left(\frac{p}{\hbar}\right) \exp \left[-\frac{i \hbar}{2 m}\left(\frac{p}{\hbar}\right)^{2} t\right] \\
& =\frac{1}{\sqrt{\hbar}} \phi\left(\frac{p}{\hbar}\right) \exp \left(-\frac{i p^{2}}{2 \hbar m} t\right)
\end{aligned}
$$

The probability distribution function for the free particle's momentum is then

$$
\begin{aligned}
|\Phi(p, t)|^{2} & =\Phi^{*}(p, t) \Phi(p, t) \\
& =\left[\frac{1}{\sqrt{\hbar}} \phi\left(\frac{p}{\hbar}\right) \exp \left(-\frac{i p^{2}}{2 \hbar m} t\right)\right]^{*}\left[\frac{1}{\sqrt{\hbar}} \phi\left(\frac{p}{\hbar}\right) \exp \left(-\frac{i p^{2}}{2 \hbar m} t\right)\right] \\
& =\left[\frac{1}{\sqrt{\hbar}} \phi^{*}\left(\frac{p}{\hbar}\right) \exp \left(\frac{i p^{2}}{2 \hbar m} t\right)\right]\left[\frac{1}{\sqrt{\hbar}} \phi\left(\frac{p}{\hbar}\right) \exp \left(-\frac{i p^{2}}{2 \hbar m} t\right)\right] \\
& =\frac{1}{\hbar} \phi^{*}\left(\frac{p}{\hbar}\right) \phi\left(\frac{p}{\hbar}\right) \\
& =\frac{1}{\hbar}\left|\phi\left(\frac{p}{\hbar}\right)\right|^{2},
\end{aligned}
$$

which is independent of time.

